March 1, 1978
WOCOMAL FRESHMAN NEET
ROUND I: ALGEBRAIC WORD PROBLEMS - MOTION,
ANSWERS MIXTURE, AGE, COIN, ANGLE, INTEGERS
(2 points) 1.
(2 points) 2.
(2 points) 3. \qquad

1. If Gladys Hoopenholler were four times as old as she will be five years from now, she would be sixty years old. How old is Gladys Hoopenholler today?
2. Find three consecutive odd integers such that the sum of the largest and three times the smallest is 64.
3. A boy who can run at 8 yards per second gave another boy whose rate is 6 yards per second a start of $8 \frac{2}{2}$ seconds. The race was a tie. How long was the course?

Auburn, Holy Name, Wachusett

ROUND II: COORDINATE GEONETRY
ANSWERS
(1 point) 1. (,)
(2 points) 2. $k=$
(3 points) 3.

1. Determine the coordinates of the point where the line $4 x=5 y=20$ intersects the y-axis.
2. If $(7, k),(1,2)$, and $(-3,5)$ are collinear points, find k.
3. Find the equation of the line perpendicular to the line $4 x-5 y=20$ and passing through its x-intercept. Write the equation in standard form $a x+b y=c$ with integral coefficients having no common factors.

Marlborough, Ware, Worcester Academy
(1 point) 1. \qquad
(2 points) 2. \qquad
(3 points) 3. \qquad

1. What is the least positive integer by which 108 should be multiplied so that the product will be a perfect square?
2. It takes 10 seconds for a clock to strike 6 o' clock beginning at 6:00 precisely. If the strikings are uniformly spaced, how long in seconds does it take to strike 120^{\prime} clock?
3. 3 dozen cucumbers cost the same as 2 dozen rutabagas. 5 dozen rutabagas cost the same as 4 dozen artichokes. 1 artichoke costs 30ф.
What does one cucumber cost?

Auburn, Wachusett

March 1, 1978 WOCOMAL FRESHMAN MEET
ROUND IV: OPERATIONS ON POLYNOMIALS
ANSWERS
(1 point) 1 .
(1 point) 2.
(2 points) 3. $\mathrm{P}=$
$A=$
(2 points) 4.

1. From the sum of $x^{2}-x+6$ and $2 x^{2}-4 x-7$, subtract $5 x^{2}-7 x-1$.
2. $\left(x^{3}-x^{2}+x-1\right) \div(x-1)=$?
3. Find both the perimeter P and the area A of this rectangle.

4. Simplify: $[3(x+2)(x-3)-2(4 x-9)]^{2}$

TEAM ROUND: FACTORING

FACTOR COMPLETELY OVER THE SET OF POLYNOMIALS WITH INTEGER COEFFICIENTS. EACH CORRECT ANSWER IS WORTH TWO POINTS.

1. $a b-c d-a d+b c$
2. \qquad
3. $x^{8}-x^{6}$
4. $x y^{2}+10 x y+25 x$
5.
6. \qquad
7. $x^{4}-3 x^{2}-4$
8.
9. \qquad
10. $a b^{3}-a b c^{2}$
11. \qquad
12. $x^{2}(a-b)+x(b-a)+2(b-a) 7$. \qquad
13. $2 b-a b+a-2 b^{2}$
14. \qquad
15. $52 x^{4}-65 x^{2}+13$
16. \qquad
17. $(a+2)^{2}-a^{4}$
18. \qquad
19. $15 x^{3} a-45 x^{2} a^{2}+30 x a^{3}$
20. \qquad
21. $16 x^{4}-409 x^{2}+225$
22. \qquad

Auburn, Hudson Catholic, Marlborough, Shrewsbury, South, Southbridge, Wachusett, Worcester Academy

March $x_{0} 19 \% 8$

ROUND I
(2pts.) 1. 10
(2 pts) 20 15017. 19
(2 pts) 3. 204 yards

ROUND II

(1 pt.) 2. (0 (-4)
(2 pts.) 2. $k=2 \frac{2}{2}$
(3 pts.) 3. $5 x+4 y=25$

ROUND III
(1.pte) 1. 3
(2pts.) 2. 22 seconds
(3 pts.) 3. 264

ROUND IV

(Apt.) 1. $-2 x^{2}+2 x$
(1 pto) $20 x^{2}+1$
(1 pto) 3. $P=22 a$
(1 $p t_{0}$)
$A=24 a^{2}+10 a b-4 b^{2}$
$(2 \mathrm{pts}) 4 ; \quad 9 x^{4}-66 x^{3}+121 x^{2}$

TEAM ROUND
TO POINTS EACH

1. $(a+c)(b-d)$
2. $x^{6}(x+1)(x-1)$
3. $x(y+5)^{2}$
4. $\left(x^{2}+1\right)(x+2)(x-2)$
5. $2 x\left(x^{2}+3 x-5\right)$
6. $a b(b * c)(b=c)$
7. $(a-b)(x-2)(x+2)$
8. $(2 b+a)(1-b)$
9. $13(2 x+1)(2 x-1)(x+1)(x-1)$
10. $\left(a^{2}+a+2\right)(a+1)(2-a)$ $0 x^{-}-\left(a^{2}+a+2\right)(a+1)(a-2)$
11. $15 a x(x-2 a)(x-a)$
12. $(4 x+3)(4 x-3)(x+5)(x-5)$
